Hyers–Ulam Stability for Differential Systems with $$2\times 2$$ Constant Coefficient Matrix

نویسندگان

چکیده

We explore the Hyers–Ulam stability of perturbations for a homogeneous linear differential system with $$2\times 2$$ constant coefficient matrix. New necessary and sufficient conditions to be stable are proven, first time, best (minimal) systems is found in some cases. Several examples provided. Obtaining second-order equations illustrates applicability strong results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

h-Stability of Linear Matrix Differential Systems

and Applied Analysis 3 whereW andZ are the solutions of (15) and (16), respectively, and I is the n × n identity matrix. Therefore, Φ(t, t 0 , x 0 ) = W(t, t 0 ) ⊗ Z T (t, t 0 ) . (22) (ii) Employing Lemma 2 and substituting forΦ the righthand side of (22), we get y (t, t 0 , x 0 ) = x (t, t 0 , x 0 )

متن کامل

Polynomial Solutions to Constant Coefficient Differential Equations

Let Dx, ... , Dr e C[d/dxx, ... , d/dxn) be constant coefficient differential operators with zero constant term. Let S = {fe C[xx,... , x„]\Dj(f) = 0 for all 1 < j < r) be the space of polynomial solutions to the system of simultaneous differential equations Dj(f) = 0. It is proved that S is a module over 3¡(V), the ring of differential operators on the affine scheme V with coordinate ring C[d/...

متن کامل

A hybrid method with optimal stability properties for the numerical solution of stiff differential systems

In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...

متن کامل

The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions

Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2022

ISSN: ['1420-9012', '1422-6383']

DOI: https://doi.org/10.1007/s00025-022-01671-y